Cell Polarity: Posterior Par-1 Prevents Proteolysis
نویسندگان
چکیده
The Par-1 kinase is required for anterior-posterior axis formation in Drosophila. New work has identified the posterior determinant, Oskar, as a Par-1 substrate. Phosphorylation stabilises Oskar, revealing a novel mechanism controlling its asymmetric distribution.
منابع مشابه
The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo.
Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-fi...
متن کاملC. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation.
PAR proteins distribute asymmetrically across the anterior-posterior axis of the 1-cell-stage C. elegans embryo, and function to establish subsequent anterior-posterior asymmetries. By the end of the 4-cell stage, anteriorly localized PAR proteins, such as PAR-3 and PAR-6, redistribute to the outer, apical surfaces of cells, whereas posteriorly localized PAR proteins, such as PAR-1 and PAR-2, r...
متن کاملStabilization of cell polarity by the C. elegans RING protein PAR-2.
Asymmetric localization of PAR proteins is a hallmark of polarized cells, but the mechanisms that create PAR asymmetry are not well understood. In the C. elegans zygote, PAR asymmetry is initiated by a transient actomyosin contraction, which sweeps the PAR-3/PAR-6/PKC-3 complex toward the anterior pole of the egg. The RING finger protein PAR-2 accumulates in a complementary pattern in the poste...
متن کاملModeling the establishment of PAR protein polarity in the one-cell C. elegans embryo.
At the one-cell stage, the C. elegans embryo becomes polarized along the anterior-posterior axis. The PAR proteins form complementary anterior and posterior domains in a dynamic process driven by cytoskeletal rearrangement. Initially, the PAR proteins are uniformly distributed throughout the embryo. After a cue from fertilization, cortical actomyosin contracts toward the anterior pole. PAR-3/PA...
متن کاملBazooka is required for polarisation of the Drosophila anterior-posterior axis.
The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002